Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Viruses ; 15(2)2023 01 30.
Article in English | MEDLINE | ID: covidwho-2225675

ABSTRACT

Live-attenuated SARS-CoV-2 vaccines present themselves as a promising approach for the induction of broad mucosal immunity. However, for initial safety assessment in clinical trials, virus production requires conditions meeting Good Manufacturing Practice (GMP) standards while maintaining biosafety level 3 (BSL-3) requirements. Since facilities providing the necessary complex ventilation systems to meet both requirements are rare, we here describe a possibility to reproducibly propagate SARS-CoV-2 in the automated, closed cell culture device CliniMACS Prodigy® in a common BSL-3 laboratory. In this proof-of-concept study, we observed an approximately 300-fold amplification of SARS-CoV-2 under serum-free conditions with high lot-to-lot consistency in the infectious titers obtained. With the possibility to increase production capacity to up to 3000 doses per run, this study outlines a potential fast-track approach for the production of live-attenuated vaccine candidates based on highly pathogenic viruses under GMP-like conditions that may contribute to pandemic preparedness.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/prevention & control , COVID-19 Vaccines , Vaccines, Attenuated , Cell Culture Techniques
2.
Sci Immunol ; 8(79): eade2798, 2023 01 27.
Article in English | MEDLINE | ID: covidwho-2193419

ABSTRACT

RNA vaccines are efficient preventive measures to combat the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. High levels of neutralizing SARS-CoV-2 antibodies are an important component of vaccine-induced immunity. Shortly after the initial two mRNA vaccine doses, the immunoglobulin G (IgG) response mainly consists of the proinflammatory subclasses IgG1 and IgG3. Here, we report that several months after the second vaccination, SARS-CoV-2-specific antibodies were increasingly composed of noninflammatory IgG4, which were further boosted by a third mRNA vaccination and/or SARS-CoV-2 variant breakthrough infections. IgG4 antibodies among all spike-specific IgG antibodies rose, on average, from 0.04% shortly after the second vaccination to 19.27% late after the third vaccination. This induction of IgG4 antibodies was not observed after homologous or heterologous SARS-CoV-2 vaccination with adenoviral vectors. Single-cell sequencing and flow cytometry revealed substantial frequencies of IgG4-switched B cells within the spike-binding memory B cell population [median of 14.4%; interquartile range (IQR) of 6.7 to 18.1%] compared with the overall memory B cell repertoire (median of 1.3%; IQR of 0.9 to 2.2%) after three immunizations. This class switch was associated with a reduced capacity of the spike-specific antibodies to mediate antibody-dependent cellular phagocytosis and complement deposition. Because Fc-mediated effector functions are critical for antiviral immunity, these findings may have consequences for the choice and timing of vaccination regimens using mRNA vaccines, including future booster immunizations against SARS-CoV-2.


Subject(s)
COVID-19 , Immunoglobulin G , Humans , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , SARS-CoV-2 , Vaccination
3.
Front Immunol ; 13: 1026473, 2022.
Article in English | MEDLINE | ID: covidwho-2198875

ABSTRACT

SARS-CoV-2 vaccine breakthrough infections frequently occurred even before the emergence of Omicron variants. Yet, relatively little is known about the impact of vaccination on SARS-CoV-2-specific T cell and antibody response dynamics upon breakthrough infection. We have therefore studied the dynamics of CD4 and CD8 T cells targeting the vaccine-encoded Spike and the non-encoded Nucleocapsid antigens during breakthrough infections (BTI, n=24) and in unvaccinated control infections (non-BTI, n=30). Subjects with vaccine breakthrough infection had significantly higher CD4 and CD8 T cell responses targeting the vaccine-encoded Spike during the first and third/fourth week after PCR diagnosis compared to non-vaccinated controls, respectively. In contrast, CD4 T cells targeting the non-vaccine encoded Nucleocapsid antigen were of significantly lower magnitude in BTI as compared to non-BTI. Hence, previous vaccination was linked to enhanced T cell responses targeting the vaccine-encoded Spike antigen, while responses against the non-vaccine encoded Nucleocapsid antigen were significantly attenuated.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19 Vaccines , Nucleocapsid
4.
Int J Environ Res Public Health ; 19(24)2022 12 17.
Article in English | MEDLINE | ID: covidwho-2163407

ABSTRACT

SARS-CoV-2 seroprevalence was reported as substantially increased in medical personnel and decreased in smokers after the first wave in spring 2020, including in our population-based Tirschenreuth Study (TiKoCo). However, it is unclear whether these associations were limited to the early pandemic and whether the decrease in smokers was due to reduced infection or antibody response. We evaluated the association of occupation and smoking with period-specific seropositivity: for the first wave until July 2020 (baseline, BL), the low infection period in summer (follow-up 1, FU1, November 2020), and the second/third wave (FU2, April 2021). We measured binding antibodies directed to SARS-CoV-2 nucleoprotein (N), viral spike protein (S), and neutralizing antibodies at BL, FU1, and FU2. Previous infection, vaccination, smoking, and occupation were assessed by questionnaires. The 4181 participants (3513/3374 at FU1/FU2) included 6.5% medical personnel and 20.4% current smokers. At all three timepoints, new seropositivity was higher in medical personnel with ORs = 1.99 (95%-CI = 1.36-2.93), 1.41 (0.29-6.80), and 3.17 (1.92-5.24) at BL, FU1, and FU2, respectively, and nearly halved among current smokers with ORs = 0.47 (95%-CI = 0.33-0.66), 0.40 (0.09-1.81), and 0.56 (0.33-0.94). Current smokers compared to never-smokers had similar antibody levels after infection or vaccination and reduced odds of a positive SARS-CoV-2 result among tested. Our data suggest that decreased seroprevalence among smokers results from fewer infections rather than reduced antibody response. The persistently higher infection risk of medical staff across infection waves, despite improved means of protection over time, underscores the burden for health care personnel.


Subject(s)
COVID-19 , Smokers , Humans , SARS-CoV-2 , Seroepidemiologic Studies , COVID-19/epidemiology , Health Personnel , Antibodies, Neutralizing , Longitudinal Studies , Antibodies, Viral
5.
EBioMedicine ; 85: 104294, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2117987

ABSTRACT

BACKGROUND: Vaccines are an important means to overcome the SARS-CoV-2 pandemic. They induce specific antibody and T-cell responses but it remains open how well vaccine-induced immunity is preserved over time following homologous and heterologous immunization regimens. Here, we compared the dynamics of humoral and cellular immune responses up to 180 days after homologous or heterologous vaccination with either ChAdOx1-nCoV-19 (ChAd) or BNT162b2 (BNT) or both. METHODS: Various tests were used to determine the humoral and cellular immune response. To quantify the antibody levels, we used the surrogate neutralization (sVNT) assay from YHLO, which we augmented with pseudo- and real virus neutralization tests (pVNT and rVNT). Antibody avidity was measured by a modified ELISA. To determine cellular reactivity, we used an IFN-γ Elispot, IFN-γ/IL Flurospot, and intracellular cytokine staining. FINDINGS: Antibody responses significantly waned after vaccination, irrespective of the regimen. The capacity to neutralize SARS-CoV-2 - including variants of concern such as Delta or Omicron - was superior after heterologous compared to homologous BNT vaccination, both of which resulted in longer-lasting humoral immunity than homologous ChAd immunization. All vaccination regimens induced stable, polyfunctional T-cell responses. INTERPRETATION: These findings demonstrate that heterologous vaccination with ChAd and BNT is a potent alternative to induce humoral and cellular immune protection in comparison to the homologous vaccination regimens. FUNDING: The study was funded by the German Centre for Infection Research (DZIF), the European Union's "Horizon 2020 Research and Innovation Programme" under grant agreement No. 101037867 (VACCELERATE), the "Bayerisches Staatsministerium für Wissenschaft und Kunst" for the CoVaKo-2021 and the For-COVID projects and the Helmholtz Association via the collaborative research program "CoViPa". Further support was obtained from the Federal Ministry of Education and Science (BMBF) through the "Netzwerk Universitätsmedizin", project "B-Fast" and "Cov-Immune". KS is supported by the German Federal Ministry of Education and Research (BMBF, 01KI2013) and the Else Kröner-Stiftung (2020_EKEA.127).


Subject(s)
COVID-19 , Viral Vaccines , Humans , SARS-CoV-2 , COVID-19 Vaccines , ChAdOx1 nCoV-19 , BNT162 Vaccine , COVID-19/prevention & control , Vaccination , Immunity, Cellular , Antibodies, Viral
6.
Pilot Feasibility Stud ; 8(1): 134, 2022 Jul 02.
Article in English | MEDLINE | ID: covidwho-1974170

ABSTRACT

BACKGROUND: The Corona-Vakzin-Konsortium project (CoVaKo) analyses the efficacy and safety of COVID-19 vaccines in a real-world setting, as well as breakthrough infections in Bavaria, Germany. A subproject of CoVaKo aims to identify adverse reactions of the COVID-19 vaccine and compare these to adverse reactions of other vaccines in an online survey. In a preceding feasibility study, the study materials were tested for comprehensibility, visual design, and motivation to participate, as well as for their ability to be implemented and carried out in primary care practices and vaccination centres. METHODS: We used a mixed-methods research design. First, three focus groups consisting of general population participants were organised to evaluate the study materials and survey. Second, a test roll-out was conducted in vaccination centres and primary care practices that involved implementing and quantitatively evaluating the online survey. Third, interviews were conducted with participating general practitioners and heads of vaccination centres four weeks after the test roll-out. RESULTS: Parts of the information and registration form proved incomprehensible, specifically regarding the recruitment material and/or online survey. For example, headings were misleading given that, relative to other vaccinations, the COVID-19 vaccination was overemphasised in the title. Participants requested additional information regarding the procedure and completion time. Within 31 days, 2199 participants, who received either a COVID-19 vaccination (99%) or at least one of the control vaccinations (1%), registered for the study. Participants (strongly) agreed that the registration process was easy to understand, that the completion time was reasonable, and that the technical setup was straightforward. Physicians and heads of the vaccination centres perceived the study as easy to integrate into their workflow. The majority expressed willingness to participate in the main study. CONCLUSIONS: Our study indicated that identifying and documenting adverse reactions following vaccinations using an online survey is feasible. Testing materials and surveys provided valuable insight, enabling subsequent improvements. Participation from health professionals proved essential in ensuring the practicality of procedures. Lastly, adapting the study's organisation to external fluctuating structures and requirements confirmed necessary for a successful implementation, especially due to dynamic changes in the nation's COVID-19 vaccination strategies. TRIAL REGISTRATION: The trial was retrospectively registered at the "Deutsches Register Klinischer Studien" (DRKS-ID: DRKS00025881 ) on Oct 14, 2021.

7.
Int J Mol Sci ; 23(15)2022 Jul 25.
Article in English | MEDLINE | ID: covidwho-1957347

ABSTRACT

Mutations in the spike protein of SARS-CoV-2 can lead to evasion from neutralizing antibodies and affect the efficacy of passive and active immunization strategies. Immunization of mice harboring an entire set of human immunoglobulin variable region gene segments allowed to identify nine neutralizing monoclonal antibodies, which either belong to a cluster of clonally related RBD or NTD binding antibodies. To better understand the genetic barrier to emergence of SARS-CoV-2 variants resistant to these antibodies, escape mutants were selected in cell culture to one antibody from each cluster and a combination of the two antibodies. Three independently derived escape mutants to the RBD antibody harbored mutations in the RBD at the position T478 or S477. These mutations impaired the binding of the RBD antibodies to the spike protein and conferred resistance in a pseudotype neutralization assay. Although the binding of the NTD cluster antibodies were not affected by the RBD mutations, the RBD mutations also reduced the neutralization efficacy of the NTD cluster antibodies. The mutations found in the escape variants to the NTD antibody conferred resistance to the NTD, but not to the RBD cluster antibodies. A variant resistant to both antibodies was more difficult to select and only emerged after longer passages and higher inoculation volumes. VOC carrying the same mutations as the ones identified in the escape variants were also resistant to neutralization. This study further underlines the rapid emergence of escape mutants to neutralizing monoclonal antibodies in cell culture and indicates the need for thorough investigation of escape mutations to select the most potent combination of monoclonal antibodies for clinical use.


Subject(s)
Antibodies, Neutralizing , COVID-19 , Animals , Antibodies, Monoclonal , Antibodies, Viral , Humans , Mice , Mutation , Neutralization Tests , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry
8.
BMC Infect Dis ; 22(1): 504, 2022 May 31.
Article in English | MEDLINE | ID: covidwho-1951085

ABSTRACT

BACKGROUND: Due to safety signals after vaccination with COVID-19 vector vaccines, several states recommended to complete the primary immunization series in individuals having received one dose of ChAdOx1 (AstraZeneca) with an mRNA vaccine. However, data on safety and reactogenicity of this heterologous regimen are still scarce. The aim of this study was therefore to compare the reactogenicity and the frequency of medical consultations after boost vaccination in a heterologous regimen with ChAdOx1 and mRNA-vaccines (BNT162b2, BioNTech/Pfizer or mRNA-1273, Moderna) to homologous regimens with ChAdOx1 or mRNA-vaccines, respectively. METHODS: In an observational cohort study reactogenicity and safety were assessed 14-19 days (short-term) and 40 to 56 days (long-term) after the boost vaccination using web-based surveys. In the short-term survey solicited and unsolicited reactions were assessed, while the long-term survey focussed on health problems leading to medical consultation after the vaccination, including those that were not suspected to be vaccine-related. RESULTS: In total, 9146 participants completed at least one of the surveys (ChAdOx1/ChAdOx1: n = 552, ChAdOx1/mRNA: n = 2382, mRNA/mRNA: n = 6212). In the short-term survey, 86% with ChAdOx1/mRNA regimen reported at least one reaction, in the ChAdOx1/ChAdOx1 and mRNA/mRNA cohorts 58% and 76%, respectively (age and sex adjusted p < 0.0001). In the long-term survey, comparable proportions of individuals reported medical consultation (ChAdOx1/ChAdOx1 vs. ChAdOx1/mRNA vs. mRNA/mRNA: 15% vs. 18% vs. 16%, age and sex adjusted p = 0.398). Female gender was associated with a higher reactogenicity and more medical consultations. Younger age was associated with a higher reactogenicity, whereas elderly people reported more medical consultations. CONCLUSION: Although the short-term reactogenicity was higher with the heterologous regimen than with the homologous regimens, other factors such as higher efficacy and limited resources during the pandemic may prevail in recommending specific regimens.


Subject(s)
BNT162 Vaccine , COVID-19 , Aged , COVID-19/prevention & control , Cohort Studies , Female , Humans , RNA, Messenger/genetics , Vaccination/adverse effects , Vaccination/methods , Vaccines, Synthetic , mRNA Vaccines
9.
Int J Mol Sci ; 23(11)2022 Jun 04.
Article in English | MEDLINE | ID: covidwho-1884208

ABSTRACT

Based on the structure of a de novo designed miniprotein (LCB1) in complex with the receptor binding domain (RBD) of the SARS-CoV-2 spike protein, we have generated and characterized truncated peptide variants of LCB1, which present only two of the three LCB1 helices, and which fully retained the virus neutralizing potency against different SARS-CoV-2 variants of concern (VOC). This antiviral activity was even 10-fold stronger for a cyclic variant of the two-helix peptides, as compared to the full-length peptide. Furthermore, the proteolytic stability of the cyclic peptide was substantially improved, rendering it a better potential candidate for SARS-CoV-2 therapy. In a more mechanistic approach, the peptides also served as tools to dissect the role of individual mutations in the RBD for the susceptibility of the resulting virus variants to neutralization by the peptides. As the peptides reported here were generated through chemical synthesis, rather than recombinant protein expression, they are amenable to further chemical modification, including the incorporation of a wide range of non-proteinogenic amino acids, with the aim to further stabilize the peptides against proteolytic degradation, as well as to improve the strength, as well the breadth, of their virus neutralizing capacity.


Subject(s)
COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Antibodies, Neutralizing , Antibodies, Viral , Humans , Peptides/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus
10.
Viruses ; 14(6)2022 05 27.
Article in English | MEDLINE | ID: covidwho-1869821

ABSTRACT

Herein, we provide results from a prospective population-based longitudinal follow-up (FU) SARS-CoV-2 serosurveillance study in Tirschenreuth, the county which was hit hardest in Germany in spring 2020 and early 2021. Of 4203 individuals aged 14 years or older enrolled at baseline (BL, June 2020), 3546 participated at FU1 (November 2020) and 3391 at FU2 (April 2021). Key metrics comprising standardized seroprevalence, surveillance detection ratio (SDR), infection fatality ratio (IFR) and success of the vaccination campaign were derived using the Roche N- and S-Elecsys anti-SARS-CoV-2 test together with a self-administered questionnaire. N-seropositivity at BL was 9.2% (1st wave). While we observed a low new seropositivity between BL and FU1 (0.9%), the combined 2nd and 3rd wave accounted for 6.1% new N-seropositives between FU1 and FU2 (ever seropositives at FU2: 15.4%). The SDR decreased from 5.4 (BL) to 1.1 (FU2) highlighting the success of massively increased testing in the population. The IFR based on a combination of serology and registration data resulted in 3.3% between November 2020 and April 2021 compared to 2.3% until June 2020. Although IFRs were consistently higher at FU2 compared to BL across age-groups, highest among individuals aged 70+ (18.3% versus 10.7%, respectively), observed differences were within statistical uncertainty bounds. While municipalities with senior care homes showed a higher IFR at BL (3.0% with senior care home vs. 0.7% w/o), this effect diminished at FU2 (3.4% vs. 2.9%). In April 2021 (FU2), vaccination rate in the elderly was high (>77.4%, age-group 80+).


Subject(s)
COVID-19 , SARS-CoV-2 , Aged , Antibodies, Viral , COVID-19/diagnosis , COVID-19/epidemiology , Germany/epidemiology , Humans , Longitudinal Studies , Prospective Studies , Seroepidemiologic Studies
11.
Clin Chem Lab Med ; 60(6): 941-951, 2022 05 25.
Article in English | MEDLINE | ID: covidwho-1714815

ABSTRACT

OBJECTIVES: The assessment of SARS-CoV-2 infections in children is still challenging, but essential for appropriate political decisions. The aim of this study was to investigate whether residual blood samples can be used for SARS-CoV-2 seroprevalence monitoring in pediatrics. METHODS: In this repeated cross-sectional cohort study, anonymous residual blood samples from pediatric patients aged 0-17 years were collected in three time-periods (Oct.-Nov. 2020, April 2021, and June-July 2021) and analyzed for SARS-CoV-2 Spike protein (anti-S) and nucleocapsid (anti-N) antibodies using commercial antibody assays. 28 reactive samples were used to compare antibody levels with a pseudotyped neutralization assay. The results were further compared to the official national COVID-19 surveillance data to calculate the number of unreported cases. RESULTS: In total, n=2,626 individual blood samples were analyzed. In this unvaccinated pediatric cohort anti-S and anti-N antibody seroprevalence increased over the three time periods (anti-S: 1.38-9.16%, and 14.59%; anti-N: 1.26%, to 6.19%, and 8.56%). Compared to the national surveillance data this leads to a 3.93-5.66-fold increase in the number of unreported cases. However, a correlation between the cumulative incidence of the individual provinces and our assigned data was found (r=0.74, p=0.0151). In addition, reactive samples with anti-S and anti-N and samples with only anti-S showed neutralization capabilities (11/14 and 8/14, respectively). Anti-S levels were not significantly different between age groups and sexes (all p>0.05). CONCLUSIONS: The present study suggests that residual blood samples from routine laboratory chemistry could be included in the estimation of the total SARS-CoV-2 seroprevalence in children.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , COVID-19/diagnosis , COVID-19/epidemiology , Chemistry, Clinical , Child , Cross-Sectional Studies , Humans , Seroepidemiologic Studies , Spike Glycoprotein, Coronavirus
12.
Vaccines (Basel) ; 10(2)2022 Feb 18.
Article in English | MEDLINE | ID: covidwho-1702407

ABSTRACT

To assess vaccine immunogenicity in non-infected and previously infected individuals in a real-world scenario, SARS-CoV-2 antibody responses were determined during follow-up 2 (April 2021) of the population-based Tirschenreuth COVID-19 cohort study comprising 3378 inhabitants of the Tirschenreuth county aged 14 years or older. Seronegative participants vaccinated once with Vaxzevria, Comirnaty, or Spikevax had median neutralizing antibody titers ranging from ID50 = 25 to 75. Individuals with two immunizations with Comirnaty or Spikevax had higher median ID50s (of 253 and 554, respectively). Regression analysis indicated that both increased age and increased time since vaccination independently decreased RBD binding and neutralizing antibody levels. Unvaccinated participants with detectable N-antibodies at baseline (June 2020) revealed a median ID50 of 72 at the April 2021 follow-up. Previously infected participants that received one dose of Vaxzevria or Comirnaty had median ID50 to 929 and 2502, respectively. Individuals with a second dose of Comirnaty given in a three-week interval after the first dose did not have higher median antibody levels than individuals with one dose. Prior infection also primed for high systemic IgA levels in response to one dose of Comirnaty that exceeded IgA levels observed after two doses of Comirnaty in previously uninfected participants. Neutralizing antibody levels targeting the spike protein of Beta and Delta variants were diminished compared to the wild type in vaccinated and infected participants.

13.
Nat Med ; 28(3): 496-503, 2022 03.
Article in English | MEDLINE | ID: covidwho-1655606

ABSTRACT

Infection-neutralizing antibody responses after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection or coronavirus disease 2019 vaccination are an essential component of antiviral immunity. Antibody-mediated protection is challenged by the emergence of SARS-CoV-2 variants of concern (VoCs) with immune escape properties, such as omicron (B.1.1.529), which is rapidly spreading worldwide. Here we report neutralizing antibody dynamics in a longitudinal cohort of coronavirus disease 2019 convalescent and infection-naive individuals vaccinated with mRNA BNT162b2 by quantifying SARS-CoV-2 spike protein antibodies and determining their avidity and neutralization capacity in serum. Using live-virus neutralization assays, we show that a superior infection-neutralizing capacity against all VoCs, including omicron, developed after either two vaccinations in convalescents or a third vaccination or breakthrough infection of twice-vaccinated, naive individuals. These three consecutive spike antigen exposures resulted in an increasing neutralization capacity per anti-spike antibody unit and were paralleled by stepwise increases in antibody avidity. We conclude that an infection-plus-vaccination-induced hybrid immunity or a triple immunization can induce high-quality antibodies with superior neutralization capacity against VoCs, including omicron.


Subject(s)
BNT162 Vaccine , COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , BNT162 Vaccine/immunology , COVID-19/immunology , COVID-19/prevention & control , Humans , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccination
14.
Eur J Immunol ; 52(5): 770-783, 2022 05.
Article in English | MEDLINE | ID: covidwho-1589126

ABSTRACT

TRIANNI mice carry an entire set of human immunoglobulin V region gene segments and are a powerful tool to rapidly isolate human monoclonal antibodies. After immunizing these mice with DNA encoding the spike protein of SARS-CoV-2 and boosting with spike protein, we identified 29 hybridoma antibodies that reacted with the SARS-CoV-2 spike protein. Nine antibodies neutralize SARS-CoV-2 infection at IC50 values in the subnanomolar range. ELISA-binding studies and DNA sequence analyses revealed one cluster of three clonally related neutralizing antibodies that target the receptor-binding domain and compete with the cellular receptor hACE2. A second cluster of six clonally related neutralizing antibodies bind to the N-terminal domain of the spike protein without competing with the binding of hACE2 or cluster 1 antibodies. SARS-CoV-2 mutants selected for resistance to an antibody from one cluster are still neutralized by an antibody from the other cluster. Antibodies from both clusters markedly reduced viral spread in mice transgenic for human ACE2 and protected the animals from SARS-CoV-2-induced weight loss. The two clusters of potent noncompeting SARS-CoV-2 neutralizing antibodies provide potential candidates for therapy and prophylaxis of COVID-19. The study further supports transgenic animals with a human immunoglobulin gene repertoire as a powerful platform in pandemic preparedness initiatives.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Animals , Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , Humans , Mice , SARS-CoV-2
15.
Nat Commun ; 12(1): 6871, 2021 11 26.
Article in English | MEDLINE | ID: covidwho-1537309

ABSTRACT

Several effective SARS-CoV-2 vaccines are currently in use, but effective boosters are needed to maintain or increase immunity due to waning responses and the emergence of novel variants. Here we report that intranasal vaccinations with adenovirus 5 and 19a vectored vaccines following a systemic plasmid DNA or mRNA priming result in systemic and mucosal immunity in mice. In contrast to two intramuscular applications of an mRNA vaccine, intranasal boosts with adenoviral vectors induce high levels of mucosal IgA and lung-resident memory T cells (TRM); mucosal neutralization of virus variants of concern is also enhanced. The mRNA prime provokes a comprehensive T cell response consisting of circulating and lung TRM after the boost, while the plasmid DNA prime induces mostly mucosal T cells. Concomitantly, the intranasal boost strategies lead to complete protection against a SARS-CoV-2 infection in mice. Our data thus suggest that mucosal booster immunizations after mRNA priming is a promising approach to establish mucosal immunity in addition to systemic responses.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , Immunity, Mucosal , Immunization, Secondary/methods , SARS-CoV-2/immunology , Adenoviridae/genetics , Administration, Intranasal , Animals , Antibodies, Viral/immunology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/genetics , Genetic Vectors , Immunization Schedule , Immunogenicity, Vaccine , Memory T Cells/immunology , Mice , Vaccines, DNA/administration & dosage , Vaccines, DNA/genetics , Vaccines, DNA/immunology , mRNA Vaccines/administration & dosage , mRNA Vaccines/immunology
16.
PLoS One ; 16(11): e0259370, 2021.
Article in English | MEDLINE | ID: covidwho-1504003

ABSTRACT

BACKGROUND: The efficacy of the BioNTech-Pfizer BNT162b2 vaccination in the elderly (≥80 years) could not be fully assessed in the BioNTech-Pfizer trial due to low numbers in this age group. We aimed to evaluate the effectiveness of the BioNTech-Pfizer (BNT162b2) vaccine to prevent SARS-CoV-2 infection and severe outcomes in octo- and novo-generians in a German state setting. METHODS AND FINDINGS: A prospective observational study of 708,187 persons aged ≥80 years living in Bavaria, Germany, was conducted between Jan 9 to Apr 11, 2021. We assessed the vaccine effectiveness (VE) for two doses of the BNT162b2 vaccine with respect to SARS-CoV-2 infection and related hospitalisations and mortality. Additionally, differences in VE by age groups ≥80 to ≤89 years and ≥90 years were studied. Analyses were adjusted by sex. By the end of follow-up, 63.8% of the Bavarian population ≥80 years had received one dose, and 52.7% two doses, of the BNT162b2 vaccine. Two doses of the BNT162b2 vaccine lowered the proportion of SARS-CoV-2 infections and related outcomes, resulting in VE estimates of 68.3% (95% confidence interval (CI) 65.5%, 70.9%) for infection, 73.2% (95% CI 65.3%, 79.3%) for hospitalisation, and 85.1% (95% CI 80.0%, 89.0%) for mortality. Sex differences in the risk of COVID-19 outcomes observed among unvaccinated persons disappeared after two BNT162b2 vaccine doses. Overall, the BNT162b2 vaccine was equally effective in octo- and novo-genarians. CONCLUSIONS: Two doses of BioNTech-Pfizer's BNT162b2 vaccine is highly effective against COVID-19 outcomes in elderly persons.


Subject(s)
COVID-19 Vaccines/therapeutic use , COVID-19/prevention & control , Age Factors , Aged , Aged, 80 and over , BNT162 Vaccine , Female , Germany/epidemiology , Hospitalization , Humans , Immunization Programs , Male , Prospective Studies , SARS-CoV-2 , Sex Factors , Treatment Outcome , Vaccination
17.
Front Pediatr ; 9: 678937, 2021.
Article in English | MEDLINE | ID: covidwho-1477849

ABSTRACT

Background: Children and youth are affected rather mildly in the acute phase of COVID-19 and thus, SARS-CoV-2 infection infection may easily be overlooked. In the light of current discussions on the vaccinations of children it seems necessary to better identify children who are immune against SARS-CoV-2 due to a previous infection and to better understand COVID-19 related immune reactions in children. Methods: In a cross-sectional design, children aged 1-17 were recruited through primary care pediatricians for the study (a) randomly, if they had an appointment for a regular health check-up or (b) if parents and children volunteered and actively wanted to participate in the study. Symptoms were recorded and two antibody tests were performed in parallel directed against S (in house test) and N (Roche Elecsys) viral proteins. In children with antibody response in either test, neutralization activity was determined. Results: We identified antibodies against SARS-CoV-2 in 162 of 2,832 eligible children (5.7%) between end of May and end of July 2020 in three, in part strongly affected regions of Bavaria in the first wave of the pandemic. Approximately 60% of antibody positive children (n = 97) showed high levels (>97th percentile) of antibodies against N-protein, and for the S-protein, similar results were found. Sufficient neutralizing activity was detected for only 135 antibody positive children (86%), irrespective of age and sex. Initial COVID-19 symptoms were unspecific in children except for the loss of smell and taste and unrelated to antibody responses or neutralization capacity. Approximately 30% of PCR positive children did not show seroconversion in our small subsample in which PCR tests were performed. Conclusions: Symptoms of SARS-CoV-2 infections are unspecific in children and antibody responses show a dichotomous structure with strong responses in many and no detectable antibodies in PCR positive children and missing neutralization activity in a relevant proportion of the young population.

18.
Diagnostics (Basel) ; 11(10)2021 Oct 06.
Article in English | MEDLINE | ID: covidwho-1463578

ABSTRACT

Antibody testing for determining the SARS-CoV-2 serostatus was rapidly introduced in early 2020 and since then has been gaining special emphasis regarding correlates of protection. With limited access to representative samples with known SARS-CoV-2 infection status during the initial period of test development and validation, spectrum bias has to be considered when moving from a "test establishment setting" to population-based settings, in which antibody testing is currently implemented. To provide insights into the presence and magnitude of spectrum bias and to estimate performance measures of antibody testing in a population-based environment, we compared SARS-CoV-2 neutralization to a battery of serological tests and latent class analyses (LCA) in a subgroup (n = 856) of the larger population based TiKoCo-19 cohort (n = 4185). Regarding spectrum bias, we could proof notable differences in test sensitivities and specificities when moving to a population-based setting, with larger effects visible in earlier registered tests. While in the population-based setting the two Roche ELECSYS anti-SARS-CoV-2 tests outperformed every other test and even LCA regarding sensitivity and specificity in dichotomous testing, they didn't provide satisfying quantitative correlation with neutralization capacity. In contrast, our in-house anti SARS-CoV-2-Spike receptor binding domain (RBD) IgG-ELISA (enzyme-linked-immunosorbant assay) though inferior in dichotomous testing, provided satisfactory quantitative correlation and may thus represent a better correlate of protection. In summary, all tests, led by the two Roche tests, provided sufficient accuracy for dichotomous identification of neutralizing sera, with increasing spectrum bias visible in earlier registered tests, while the majority of tests, except the RBD-ELISA, didn't provide satisfactory quantitative correlations.

19.
Int J Mol Sci ; 22(19)2021 Sep 22.
Article in English | MEDLINE | ID: covidwho-1438627

ABSTRACT

The ongoing pandemic coronavirus (CoV) disease 2019 (COVID-19) by severe acute respiratory syndrome CoV-2 (SARS-CoV-2) has already caused substantial morbidity, mortality, and economic devastation. Reverse genetic approaches to generate recombinant viruses are a powerful tool to characterize and understand newly emerging viruses. To contribute to the global efforts for countermeasures to control the spread of SARS-CoV-2, we developed a passage-free SARS-CoV-2 clone based on a bacterial artificial chromosome (BAC). Moreover, using a Lambda-based Red recombination, we successfully generated different reporter and marker viruses, which replicated similar to a clinical isolate in a cell culture. Moreover, we designed a full-length reporter virus encoding an additional artificial open reading frame with wild-type-like replication features. The virus-encoded reporters were successfully applied to ease antiviral testing in cell culture models. Furthermore, we designed a new marker virus encoding 3xFLAG-tagged nucleocapsid that allows the detection of incoming viral particles and, in combination with bio-orthogonal labeling for the visualization of viral RNA synthesis via click chemistry, the spatiotemporal tracking of viral replication on the single-cell level. In summary, by applying BAC-based Red recombination, we developed a powerful, reliable, and convenient platform that will facilitate studies answering numerous questions concerning the biology of SARS-CoV-2.


Subject(s)
COVID-19/virology , Cloning, Molecular/methods , Genome, Viral , SARS-CoV-2/genetics , Animals , Chlorocebus aethiops , HEK293 Cells , Humans , Mutagenesis , Plasmids/genetics , Recombination, Genetic , Vero Cells
20.
Pathogens ; 10(9)2021 Aug 25.
Article in English | MEDLINE | ID: covidwho-1374480

ABSTRACT

Currently, human infections with the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) are accelerating the ongoing spread of the pandemic. Several innovative types of vaccines have already been developed, whereas effective options of antiviral treatments still await a scientific implementation. The development of novel anti-SARS-CoV-2 drug candidates demands skillful strategies and analysis systems. Promising results have been achieved with first generation direct-acting antivirals targeting the viral polymerase RdRp or the protease 3CLpro. Such recently approved or investigational drugs like remdesivir and GC376 represent a basis for further development and optimization. Here, we establish a multi-readout assay (MRA) system that enables the antiviral assessment and mechanistic characterization of novel test compounds, drug repurposing and combination treatments. Our SARS-CoV-2-specific MRA combines the quantitative measurement of several parameters of virus infection, such as the intracellular production of proteins and genomes, enzymatic activities and virion release, as well as the use of reporter systems. In this regard, the antiviral efficacy of remdesivir and GC376 has been investigated in human Caco-2 cells. The readouts included the use of spike- and double-strand RNA-specific monoclonal antibodies for in-cell fluorescence imaging, a newly generated recombinant SARS-CoV-2 reporter virus d6YFP, the novel 3CLpro-based FRET CFP::YFP and the previously reported FlipGFP reporter assays, as well as viral genome-specific RT-qPCR. The data produced by our MRA confirm the high antiviral potency of these two drugs in vitro. Combined, this MRA approach may be applied for broader analyses of SARS-CoV-2-specific antivirals, including compound screenings and the characterization of selected drug candidates.

SELECTION OF CITATIONS
SEARCH DETAIL